Heterogeneous Copper Catalyst for the Cycloaddition of Azides and Alkynes without Additives under Ambient Conditions

In Soo Park,† Min Serk Kwon,† Youngkwon Kim,‡ Jae Sung Lee,‡ and Jaiwook Park*,†

Department of Chemistry and Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyojadong, Pohang, Kyeongbuk 790-784, Republic of Korea

pjw@postech.ac.kr

Received November 28, 2007

ORGANIC LETTERS 2008

Vol. 10, No. 3 ⁴⁹⁷-**⁵⁰⁰**

ABSTRACT

A new copper catalyst was developed by immobilizing copper nanoparticles in aluminum oxyhydoxide fiber. The catalyst showed high catalytic activity for the (3 + **2) Huisgen cycloaddition of nonactivated alkynes as well as activated ones with various azides at room temperature. The catalyst was recycled five times without significant loss of activity.**

The Huisgen cycloaddition using azides and alkynes is an important method for the synthesis of $1,2,3$ -triazoles.¹ Its 100% atom economy and simple purification have led to various applications for phamaceuticals, agrochemicals, polymers, biochemicals, and functional materials.² In particular, 1,4-disubstituted triazoles have been used as metalbinding compounds, ligand linkers, and triazole-based monophosphine ligands.3 However, the major limitations of the original reaction are the requirement of high reaction temperatures and low regioselectivity.

(3) (a) Liu, D.; Gao, W.; Dai, Q.; Zhang, X. *Org. Lett.* **2005**, *7*, 4907. (b) Detz, R. J.; Heras, S. A.; Gelder, R. D.; van Leeuwen, P. W. N. M.; Hiemstra, H.; Reek, J. N. H.; van Maarseveen, J. H. *Org. Lett.* **2006**, *8*, 3227. (c) Aucagne, V.; Leigh, D. A. *Org. Lett.* **2006**, *8*, 4505. (d) Li, Y.; Huffman, J. C.; Flood, A. H. *Chem. Commun.* **2007**, 2692. (e) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. *Org. Lett.* **2007**, *9*, 2333.

Meldal and co-workers have developed the copper(I) catalyzed Huisgen cycloaddition of terminal alkynes to azides on solid phase in organic solvent.4a Sharpless and co-workers have overcome the limitations by employing copper sulfate and sodium ascorbate.4b Fokin and co-workers have found (*η*⁵ -C5Me5)RuCl(PPh3)2 to be an efficient catalyst to produce 1,5-disubstituted triazoles regioselectively.5 In addition, many new catalyst systems have been reported in recent years,⁶ including *N*-heterocyclic copper carbene complexes⁷ and copper nanoclusters.8 To improve recovery and reuse, copper

[†] Department of Chemistry.

[‡] Department of Chemical Engineering.

⁽¹⁾ Huisgen, R. *In 1,3-Dipolar Cycloaddition Chemistry*; Padwa, A., Ed.; Wiley: New York, 1984.

^{(2) (}a) Ryu, E.-H.; Zhao, Y. *Org. Lett.* **2005**, *7*, 1035. (b) Such, G. K.; Quinn, J. F.; Quinn, A.; Tjipto, E.; Caruso, F. *J. Am. Chem. Soc.* **2006**, *128*, 9318. (c) Lo¨ber, S.; Rodriguez-Loaiza, P.; Gmeiner, P. *Org. Lett.* **2003**, *5*, 1753. (d) Lutz, J.-F. *Angew. Chem., Int. Ed.* **2007**, *46*, 1018.

^{(4) (}a) Tornøe, C.; Christensen, C.; Meldal, M. *J. Org. Chem.* **2002**, *67*, 3057. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. *Angew. Chem., Int. Ed.* **2002**, *41*, 2596. (c) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. *Angew. Chem., Int. Ed.* **2001**, *40*, 2004.

⁽⁵⁾ Zhang, L.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. *J. Am. Chem. Soc.* **2005**, *127*, 15998.

^{(6) (}a) Wang, Z.-X.; Qin, H.-L. *Chem. Commun.* **2003**, 2450. (b) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. *Org. Lett.* **2004**, *6*, 4223. (c) Feldman, A. K.; Colasson, B.; Fokin, V. V. *Org. Lett.* **2004**, *6*, 3897. (d) Kacprzak, K. *Synlett.* **2005**, 943. (e) Reddy, K. R.; Rajgopal, K.; Kantam, M. L. *Synlett.* **2006**, 957. (f) Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. *Angew. Chem., Int. Ed.* **2007**, *46*, 1730. (g) Bertrand, P.; Gesson, J. P. *J. Org. Chem.* **2007**, *72*, 3596.

species have been immobilized onto various supports such as activated charcoal,⁹ amine-functionalized polymers,¹⁰ and zeolites.11 However, the immobilized catalysts frequently suffer from low activity and low product yield and require additives⁹ and high reaction temperatures.^{6,9,11}

We report herein a recyclable copper catalyst (Cu/ AlO(OH), (**1**)) which is composed of copper nanoparticles in aluminum oxyhydroxide nanofiber. The catalyst **1** is highly active at room temperature for the Huisgen $(3 + 2)$ cycloaddition of a wide range of azides and nonactivated alkynes without requiring additives. The catalyst **1** can be easily synthesized from readily available reagents by a onepot procedure similar to those for our Pd,^{12b} Ru,^{12e} Rh,^{12f} and Ir catalysts reported previously (Scheme 1).12

Copper nanoparticles were generated by heating a mixture of cupric chloride dihydrate, ethanol, aluminum tri-*sec*butoxide, and pluronic P123 at 160° C.¹³ After 3 h, water was added for gelation. The resulting bluish powder was filtered, washed with acetone, and dried at 120 °C for 2 h to give a green powder. The green powder was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) , and nitrogen isotherm experiment.¹⁴ The fibrous morphology, which is a typical feature of aluminum oxyhydroxide, was observed in the low-resolution TEM image (Figure 1).

Figure 1. TEM images of 1: (a) low-resolution (100 nm bar scale); (b) high resolution (5 nm bar scale).

As expected on the basis of previous reports,¹⁵ the XPS analysis revealed that the surface of the Cu nanoparticles is covered with $Cu₂O$ and $CuO_{14,15}$ The surface area, the pore volume, and the pore size of **1** were estimated to be 360 m2 g^{-1} , 0.65 cm³ g^{-1} , and 3.2 nm, respectively, by BET nitrogen adsorption analysis. With the ICP data, the copper content of **1** was calculated to be 4.0 wt %; the copper nanoparticles entrapped in the aluminum oxyhydroxide matrix corresponded to 98% of the employed cupric chloride.

We compared the activities of **1** and commercial Cu catalysts in the cycloaddition of phenylacetylene and *n*-octyl azide at room temperature (Table 1). The reaction using **1**

^a Phenylacetylene (1.0 mmol) and *n*-octylazide (1.1 mmol) were reacted in *n*-hexane (2.0 mL) for 12 h. *^b* Isolated yield of 1-octyl-4-phenyl-1*H*-1,2,3-triazole. *^c* Triethylamine (1.0 equiv) was used as an additive.

(3 mol % of Cu) gave the cyclized product in 95% yield (entry 1). Heating or using triethylamine as an additive increased the rate significantly (entries 2 and 3). Cuprous oxide showed very low activity (entry 4); even with 100 mol % of Cu the yield was only 15% (entry 5). Pure cupric oxide and alumina-supported cupric oxide were inactive (entries 6 and 7). The precursor of **1**, cupric chloride dihydrate, was also inactive (entry 8).

The scope of the $(3 + 2)$ cycloaddition using 1 was investigated with various alkynes and azides at room temperature (Table 2). *n*-Octyl azide (**2**), 4-azidoanisole (**3**), and benzyl azide (**4**) were employed as aliphatic and aromatic azides and were synthesized by following the reported literature procedures.¹⁶ Various terminal alkynes were readily reacted with the azides to give the corresponding 1,2,3-

(13) Without pluronic P123, copper nanoparticles were aggregated before gelation.

(14) See the Supporting Information.

(15) (a) Molteni, G.; Bianchi, C. L.; Marinoni, G.; Santo, N.; Ponti, A. *New. J. Chem.* **2006**, *30*, 1137. (b) Son, S. U.; Park, I. K.; Park, J.; Hyeon, T. *Chem. Commun.* **2004**, 778. (c) Chusuei, C. C.; Brookshier, M. A.; Goodman, D. W. *Langmuir* **1999**, *15*, 2806.

(16) (a) Alvarez, S. G.; Alvarez, M. T. *Synthesis* **1997**, 413. (b) Zhu, W.; Ma, D. *Chem. Commun.* **2004**, 888. (c) Andersen, J.; Madsen, U.; Bjorkling, F.; Liang, X. *Synlett* **2005**, 2209.

⁽⁷⁾ Dı´ez-Gonza´lez, S.; Correa, A.; Cavallo, L.; Nolan, S. P. *Chem. Eur. J.* **2006**, *12*, 7558.

⁽⁸⁾ Pacho´n, L. D.; van Maarseveen, J. H.; Rothenberg, G. *Ad*V*. Synth. Catal.* **2005**, *347*, 811.

⁽⁹⁾ Lipshutz, B.; Taft, B. R. *Angew. Chem., Int. Ed.* **2006**, *45*, 8235.

⁽¹⁰⁾ Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. *Org. Lett.* **2006**, *8*, 1689.

⁽¹¹⁾ Chassing, S.; Kumarraja, M.; Sido, A. S. S.; Pale, P.; Sommer, J. *Org. Lett.* **2007**, *9*, 883.

^{(12) (}a) Kim, N.; Kwon, M. S.; Park, C. M.; Park, J. *Tetrahedron Lett.* **2004**, *45*, 7057. (b) Kwon, M. S.; Kim, N.; Park, C. M.; Lee, J. S.; Kang, K. Y.; Park, J. *Org. Lett.* **2005**, *7*, 1077. (c) Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. *Angew. Chem., Int. Ed.* **2005**, *44*, 6913. (d) Park, I. S.; Kwon, M. S.; Kim, N.; Lee, J. S.; Kang, K. Y.; Park, J. *Chem. Commun.* **2005**, 5667. (e) Kim, W.-H.; Park, I. S.; Park, J. *Org. Lett.* **2006**, *8*, 2543. (f) Park, I. S.; Kwon, M. S.; Kang, K. Y.; Lee, J. S.; Park, J. *Ad*V*. Synth. Catal.* **²⁰⁰⁷**, *³⁴⁹*, 2039.

				Table 2. Cycloaddition of Various Azides and Alkynes ^a
	R_1 -		Cu/AIO(OH)	$N \n\leq N$ $N - R_2$
	R_2	$-N_3$	n-hexane room temp	R.
entry	substrate	azide ^b	time (h)	product (% yield) ^c
$\,$ $\,$	Ph-	$\mathbf{2}$	12	$N \leq N$ $-n$ -octyl Ph (95)
\overline{c}	Ph-	4	6	Ph (94)
3	Ph-	3	12	OMe PI (97)
$\overline{\mathbf{4}}$	HС	$\mathbf{2}$	20	-n-octyl HO (97)
5		4	6	Ph HO (92)
6		3	12	OMe HO (97)
7		3	12	OMe HO (97)
8^d		$\overline{\mathbf{4}}$	24	N≖N Ph (77)
9 ^d	n-Hexyl-	4	15	Ph (82)
10	EtÓ	3	$\,$ I	OMe O _z ÒEt (97)
11		4	3	$N =$ Ph (97)
12	propargyl ether	$\overline{\mathbf{4}}$	15	Pŀ Ph o (85)
13	$1,6-$ heptadiyne	4	15	N_{S_N} Ph Ph \overline{C}^2 (85)
14		3	3	Ņ=N OMe(98)
15		$\overline{\mathbf{4}}$	\mathfrak{Z}	N= ^N Ph (97)
16	Ph- Ξ	$\overline{\mathbf{4}}$	8	Ph $(94)^e$ P)

^a Alkyne (1.0 mmol) and azide (1.1 mmol) were reacted in *n*-hexane (2.0 mL) at 25 °C in the presence of **1** (3.0 mol %). *b* The azides are *n*-octylazide (2), benzyl azide (3), and 4-azidoanisole (4). *c* Isolation yield. d 6.0 mol % of 1 was used. *e* Benzyl azide (22 mmol) was reacted with 20 mmol of phenylacetylene.

triazoles in over 90% yield in most of the tested reactions. Functional groups such as hydroxy, ethoxycarbonyl, pyridyl group, carbon-carbon double bond, and ether functionality are compatible with the cyclization. The reactions with **4** were faster than those with other azides (entries 2 and 5). It is noticeable that the reaction of 2-methyl-3-butyn-2-ol and **4** was completed within 6 h at room temperature (entry 5), compared to that using Cu/C (10 mol % of Cu), which provided the cyclized product in 65% after 48 h at 23 °C.9 The reaction with alkynes containing electron-withdrawing substituents such as ethyl propiolate and 4-fluorophenylacetylene were distinctively fast (entries 10 and 11). The reactions with aliphatic alkynes such as 1-octyne, 1-ethynylcyclohex-1-ene, propargyl ether, and 1,6-hexadiyne were relatively sluggish (entries 8, 9, and 13). The cyclization of the dialkynes provided bis(1,2,3-triazole)s, which have been used as metal-binding ligands (entries 12 and 13).³ The presence of a pyridyl group appeared to enhance the reaction rate; the reactions with 4-azidoanisole and benzyl azide were completed in 3 h (entries 14 and 15).^{9,10} A large-scale reaction was tested with phenylacetylene (20 mmol) and benzyl azide (22 mmol); the reaction was completed in 8 h, and the corresponding 1,2,3-triazole was isolated in 94% yield (entry 16).

The recyclability of **1** was tested in the cycloaddition of phenylacetylene and *n*-octyl azide (Table 3). The catalyst

^a Phenylacetylene (1.0 mmol) and *n*-octyl azide (1.1 mmol) were reacted in *n*-hexane (2.0 mL) at 25 °C with **1** (3.0 mol %) for 12 h. *b* Isolation yield.

was recovered simply by filtration and reused after washing with ethyl acetate and drying in the air. Although a slight decrease in activity was observed in the reuse, about 95% of the original activity was shown even in the fifth use. Based on ICP analysis, there was no significant leaching of copper species from our catalyst during the recycling test.¹⁷ The observed high activity and recyclability of **1** would result from the fibrous aluminum oxyhydroxide matrix that provides a highly porous structure and stabilizes metal nanoparticles.

In conclusion, we have developed a simple and reproducible synthetic method for a recyclable copper catalyst that shows the highest activity among known heterogeneous catalysts in the azide-alkyne cycloaddition without additives. The scope of the cycloaddition using our catalyst is quite broad; various terminal alkynes react readily with aliphatic azides as well as aromatic ones at room temperature.

Acknowledgment. We are grateful for financial support from the Korea Research Foundation (KRF-2006-005-

⁽¹⁷⁾ The copper content of the catalyst recovered after the fifth use was 3.84 wt %, which is 96% of the original catalyst.

J01201) and the Korean Ministry of Education through the BK21 project for our graduate program.

Supporting Information Available: The synthetic procedure and characterization data for **1** and the triazoles in Table 2. This material is available free of charge via the Internet at http://pubs.acs.org.

OL702790W